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Rehabilitating the Random Utility Model. A comment on Apesteguia and Ballester (2018)‡ 

Anna Conte and John D. Hey 

 

ABSTRACT 

The Random Utility Model (RUM) and the Random Preference Model (RPM) are important tools in the 

economist’s toolbox when estimating preference functionals from experimental data. In an important 

recent paper in this journal, Apesteguia and Ballester (2018) cautioned decision theorists against using 

the RUM, suggesting that the RPM may be preferable. This short note comments on this paper, and 

concludes that RUM does not suffer from the drawbacks suggested in their paper. 

 

1. Introduction 

Following Apesteguia and Ballester (2018) (from now on A&B), we take the simplest possible story. 

We have some experimental pairwise choice data that we want to explain. We assume that all subjects 

in the experiment are Expected Utility maximisers and have a CRRA utility function 
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where ω is the measure of (relative) risk aversion.  Now, in order to explain any experimental data, 

we need to have a story about the stochastic nature of the data. This is where RUM and RPM crucially 

differ. RPM, the Random Preference Model, assumes that the parameter ω is random, and that, once 

it is drawn from its distribution, utilities are evaluated without error; in contrast RUM, the Random 

Utility Model, assumes that ω is constant, and that a random variable with mean 0 is added to the 

utilities, and then the decision is taken. Let us denote the respective expected utilities by eux and euy. 

In RUM the random variable ε is added to their difference and the decision as to whether to choose x 

or y is taken on the basis of the value of eux-euy+ε. Take the distribution of ε to be logistic with 

precision parameter λ. Then we can calculate the probability that x is chosen for any given value of ω.  

The figure to the left below shows Figure 1 in their paper (with a particular value for λ), and forms the 

central part of their criticism of RUM. 

                                                           
‡ We acknowledge very helpful comments from the authors, which have led to clarifications to this comment. 
 Department of Statistical Sciences, Sapienza University of Rome. Email: anna.conte@uniroma1.it 
 Department of Economics and Related Studies, University of York. Email: john.hey@york.ac.uk 
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Figure 1:                 RUM                                              RPM                            Difference between utilities 

 

It will be noted that the curve is not monotonic (unlike the equivalent graph for RPM shown in the 

middle above), so that two values of risk-aversion may be associated with a given probability of x being 

chosen. A&B remark that this “may pose identification problems and could yield biased estimates”, 

though we note that there is no proof of this suggestion.  

Note that there is non-monotonicity in the deterministic part of RUM. Consider the graph of eux-euy 

against ω shown to the right above: it starts out positive, crosses zero, becomes negative and after 

reaching a trough, starts rising again and approaches zero from below1. This curve is non-monotonic, 

and implies that, after the trough, the risky option gets more and more attractive relative to the safe 

option as risk aversion increases, even though the latter remains favourite (the curve approaches zero 

from below). This is a property of CRRA preferences. We conclude that RUM captures the non-

monotonicity of the preferences, while RPM does not. 

Furthermore, we should distinguish between what we can logically deduce using the deterministic 

part and the estimates produced by maximum likelihood. In a very important sense, maximum 

likelihood estimation averages or reconciles the deductions from the deterministic part; this is 

common to both RUM and RPM.  

The vertical line at ω=0.185 is the value of risk-aversion at which an individual would be indifferent 

between x and y; we denote this by ω*. We note that all we can logically deduce from the deterministic 

part is that, if the individual chose2 x (y) on this problem, then his or her ω is less than (is greater than) 

0.185. The fact that the curve is not monotonic is irrelevant to this deduction, and is also irrelevant to 

                                                           
1 As A&B say on page 77, “The reason is that both ( )crraU x and ( )crraU y approach zero with higher levels of risk 

aversion. Hence, ( ) ( )crra crraU x U y  also approaches zero.” 
2 To avoid presentational clutter, we will ignore indifference throughout. 
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the issue of whether the model is identified. Indeed one observation is not enough to get identifiability 

if one has to estimate the two parameters ω and λ3.  

 

2.     Is non-monotonicity a real issue? 

 

Figure 2: probabilities for several different values of λ (the precision parameter) 

 

Let us start by considering the figure above graphing the probability of choosing the gamble x against 

the risk attitude. This corresponds to A&B’s Figure 1 with lines drawn for different values of λ (the 

RUM precision parameter). The value of ω that equates the two, indicated by the vertical line, is the 

only uniquely identified point in that plot, given the infinity of equally-probable combinations of risk 

index and error dispersion. Therefore, a subject’s risk attitude being below or above this value 

(depending on whether x or y has been chosen, respectively) is all we can logically deduce (from the 

deterministic part of either story) from this sole decision task. We note that if λ, the precision 

parameter, were infinite, the ‘curve’ would be a step function with the step at 0.185. 

Having said this, let us have a look at A&B’s example problems from a different point of view – from 

that of their contribution to the likelihood. If our target is that of estimating the individuals’ risk 

attitude, through maximising the log-likelihood, we need to consider the information that decision 

tasks convey in terms of their contribution to the likelihood. The first key question is whether the 

likelihood function is single-peaked. If not, maximum likelihood estimates may not be uniquely 

identifiable. If it is, the next question is whether the true values of the parameters can be retrieved 

                                                           
3 We will see in what follows that, if the value of λ is taken as given, one does get identifiability: if x is chosen, 
the maximum likelihood estimate of ω is -∞; if y is chosen the maximum likelihood estimate of ω is around 0.75, 
at the trough of the function; the corresponding RPM estimates would be -∞ and ∞. Which is more misleading? 
We do not know. 
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from the data by maximum likelihood estimation. Let us assume for the moment that the parameter 

λ is known4.  

             

                              decision problem A                                                         decision problem B 

Figure 3: likelihood contributions for two different problems 

 

The figure to the left depicts the individual contributions that A&B’s example decision problem 

(referred to as ‘decision problem A’) passes to the likelihood function to be maximised, for a given λ 

value, but this obviously depends upon the choice of the subject. The continuous line is the one that 

is passed when x is chosen, and the graph shows that this function is maximised when 𝜔 is at –∞5. 

The dashed line is the one that is passed if y is chosen and this is a single-peaked likelihood function 

(though not necessarily peaking at the true value of ω). Ironically, it is the non-monotonicity that gives 

rise to this single-peaked-ness, though we are not saying that the peak is at the ‘true’ value of ω: all 

we can logically deduce from the deterministic part is that ω>0.185. The figure to the right represents 

the contribution to the likelihood of a second decision problem identical to A&B’s except for the 

probability of the largest outcome which is here put equal to 0.3. This second decision problem 

(referred to as ‘decision problem B’), has a gamble x less risky than in the original problem, and 

showing a higher ω* at 0.801. 

Let us now look at the identifiability of risk attitude using maximum likelihood, from these two decision 

problems (we continue to assume for the moment that λ is known). This clearly depends on what the 

                                                           
4 We will consider later the situation where we need to estimate both (the mean of) ω and λ.  

5 As A&B have pointed out to us, even though the graph looks flat to the left of around -0.365, it is in fact not 
so and has a negative slope everywhere in this region. 
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subject chooses. The two graphs below show the contributions to the likelihood depending on the 

choices.  

 

         x chosen in both problems                                       y chosen in problem A and x in problem B 

 

                             x chosen in problem A and y in problem B                                     y chosen in both problems 

Figure 4: joint contributions to the RUM likelihood from two decision problems 

 

There are four possibilities: 

Possibility 1: x is chosen in both problems. The two observations lead to logical deductions from the 

deterministic part that ω < 0.185 and that ω < 0.801. Here the maximum likelihood occurs when ω is 

–∞, which may be misleading, but is not inconsistent with what we can deduce. 

Possibility 2: y is chosen in problem A and x in problem B. The two observations lead to logical 

deductions from the deterministic part that ω > 0.185 and that ω < 0.801. Here there is a well-defined 

unique best ω. In this case, the likelihood’s maximum lies within the ω* for the two decision problems. 

Possibility 3: x is chosen in problem A and y in problem B. The two observations lead to logical 

deductions from the deterministic part that ω < 0.185 and that ω > 0.801. The two observations 
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conflict6 in terms of the information that they are giving, and it is not clear how the maximum 

likelihood estimate can be interpreted. Note that this is inevitable given the conflicting information 

that the two observations are giving us. There is no ‘correct’ way for maximum likelihood to reconcile 

them. 

Possibility 4: y is chosen in both problems. The two observations lead to logical deductions from the 

deterministic part that ω > 0.185 and ω > 0.801. Here the maximum likelihood estimate is around 1.5, 

which may well be misleading, but if all we know is that ω > 0.185 and that ω > 0.801 then the 

estimation is not wrong7. 

In all cases, we can find estimates. This reinforces the point that it is the nature of the problems, and 

the decisions that the subject makes, that allow us to make inferences. We note that whether these 

inferences are accurate is a separate point: this depends upon whether the maximum likelihood 

estimates can retrieve the true values of the parameters; we will turn to this in the next section. 

Incidentally, we get the same kinds of graphs for the RPM specification (see Figure 6 below) and can 

make the same kind of inferences8. Note that when y is chosen in both problems, the RPM estimation 

of ω is +∞, which although misleading is not necessarily wrong (we just do not know). 

Now let us look deeper at this case. Recall that there are two parameters in the RUM model: the risk-

aversion parameter ω and the precision parameter λ. The above discussion has assumed that we know 

the latter. However, it has to be estimated. Examine Figure 5 that graphs the RUM likelihood function 

(in the case of two observations in both of which y was chosen) as a function of ω for different values 

of λ (where the higher curves relate to higher values of λ). The maximum with respect to both ω and 

λ is clearly at +∞ for both – the same as the RPM maximum likelihood estimates (and equally absurd 

from just two observations). 

                                                           
6 They also conflict for RPM. 
7 In this case, the RPM maximum likelihood estimator is +∞, which, while not wrong (we do not know), may be 
misleading. 
8 The graphs in Figures 4 and 5 are sensitive to the values of λ used. Here, we have used λ = 1.5 (as A&B) for 
those representing the joint likelihood contribution for the RUM model, and λ = 2.5 for the RPM model in order 
to make the plots easily readable in the same range of values for ω. We note that, when λ tends to +∞, the 
likelihood contributions from the two approaches coincide.  
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Figure 5: joint contributions to the RUM likelihood from two decision problems for the case in which y 

is chosen in both problems, for different values of λ  

 

Let us now consider the problems that maximum likelihood may have with N observations, numbered 

so that the first n are where the individual chooses x and the last N-n are where the individual chooses 

y9. Logical deductions from the deterministic part of the stories from these observations are that ω

*
i for i ≤ n and that ω > *

i for i > n. If it happens to be the case that the *
i for i>n are all smaller than 

the *
i for i ≤ n, then there is no problem, no conflict in the information given to us, and we can safely 

conclude that ω lies between *max( ; )i i n  and *min( ; )i i n  . Moreover, the maximum likelihood 

estimates for both RUM and RPM will be in this interval. However, if there is any value of *
i  in the 

set i>n larger than any value of *
i in the set i ≤ n, then there is a conflict in the information provided. 

Maximum likelihood estimation must resolve this conflict somehow, both for RUM and RPM. How this 

is done depends upon the shape of the various likelihood functions, but non-monotonicity itself does 

not change the nature of the problem, though it clearly affects the solution. It may imply biased 

estimates, but this is an empirical issue. We investigate this in the next section. 

                                                           
9 We shall ignore the uninteresting cases where the individual either chose x everywhere or chose y everywhere. 
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                                               x chosen in both problems                         y chosen in problem A and x in problem B 

  

                                  x chosen in problem A and y in problem B                         y chosen in both problems 

Figure 6: joint contributions to the RPM likelihood from two decision problems 

 

 3. Identifiability and retrievability 

We use the data from Andersen et al (2008), which is the same data that A&B use. We start by 

presenting the two figures below. The one to the left shows the RUM log-likelihoods for the data set 

plotted against ω for a number of different values of λ; the one to the right shows the log-likelihoods 

for the data set plotted against the value of λ (the precision parameter in RUM) for a number of 

different values of the risk attitude ω. It is abundantly clear that all the curves are convex and have a 

unique maximum. So the model is identified. 
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Figure 7: RUM log-likelihoods plotted against ω and λ 

 

In a sense, this is implicit in the fact that A&B report the results of estimations using the same data for 

both one version of RUM and one version of RPM. They could not have done this if the models were 

not identifiable. But this rather begs the point as to whether the estimates retrieve the true values. 

To explore this latter point, we take the same set of problems, but, instead of estimating on the actual 

data, we generate 1000 repetitions, taking their estimated parameters to be the true parameters, 

estimate10 for each repetition and take the means and standard deviations. The results are below (with 

the standard deviations below their respective estimates). 

 
true 

estimated   
true 

   
true 

Estimated 

RUM RPM  RUM RPM  RUM RPM 

RUM  .661 .661 
.0116 

.696 

.0151 
 RUM .275 .276 

.0264 
3.267 
.1673 

 RUM -3491.8 -3571.3 

RPM .752 .676 
.0151 

.752 

.0157 
 RPM 2.495 .343 

.0496 
2.498 
.1031 

 RPM -3562.8 -3467.5 

mean (mean) parameter values  mean dispersion parameters  maximised Log-likelihoods 

 

It will be seen that when the estimated model is the true model, then the mean estimates are close 

to their true values, but when the estimated model is not the true model, this is not the case. Also the 

(maximised) log-likelihoods are the largest when the estimated model is the true model. This seems 

to indicate that both RUM and RPM are identified and that the parameter estimates for both models 

retrieve their true values from the data. 

In passing we should note that, just because A&B’s estimated parameters for the RUM are lower than 

those for RPM, this does not imply that the former are biased downwards. We cannot know as we do 

not know the truth. In any case the fixed value of the risk-aversion index for RUM is a different thing 

                                                           
10 Incidentally, as the eagle-eyed reader will have noticed, there is also estimated a tremble parameter, as the 
RPM cannot cope with observations for which the subject chose a dominating option. For the sake of fairness 
we introduced a tremble for both models. The trembles were estimated precisely in all cases. 
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from the mean of the distribution of the risk-aversion index for RPM. The stories being estimated are 

simply different. 

 

4. Concluding comments 

Before concluding, we should note that, while A&B recommend the use of the RPM, its application is 

not without its difficulties. For the case we and they have considered, where there is just one random 

parameter, estimation of RPM is straightforward: for each problem we just need to calculate the value 

ω* at which the subject is indifferent between x and y and then calculate the probability of ω being 

greater or less than that. If, however, there are, say n>1 random parameters, one has to find the 

frontier (in n-dimensional space) over which the subject is indifferent, and then calculate the 

probability of the (n-dimensional) parameters being inside that. Based on the existing literature and 

on our own experience, this is not always an easy task. In contrast, RUM is straightforward – though 

we agree that this is not a reason for its use. 

Be that as it may, we have shown that both models are identified and produce estimates of the true 

parameters close to their true values. It follows that we have shown that it is safe to use the RUM 

when estimating preference functionals from experimental data. The non-monotonicity of the 

probability function does not create problems. 
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